I. DATOS DEL PROGRAMA Y LA ASIGNATURA		
NOMBRE DEL	MAESTRÍA	EN CIENCIAS EN EL USO, MANEJO Y PRESERVACIÓN DE LOS
PROGRAMA	RECURSOS NATURALES	
NOMBRE DE LA	SISTEMAS DE INFORMACIÓN GEOGRÁFICA	
ASIGNATURA	SISTEMAS DE INFORMACION GEOGRAFICA	
CLAVE	9436	

TIPO DE ASIGNATURA	OBLIGATORIA	OPTATIVA	Х
--------------------	-------------	----------	---

TIPO DE ASIGNATURA	TEÓRICA	PRÁCTICA	TEÓRICO-PRÁCTICA	Χ
--------------------	---------	----------	------------------	---

NÚMERO DE HORAS	72
NÚMERO DE CRÉDITOS	7
FECHA DE ÚLTIMA ACTUALIZACIÓN	10/10/2019

RESPONSABLE DE		CLAVE SNI
LA ASIGNATURA	DRA. PATRICIA GONZÁLEZ ZAMORANO	
PROFESORES	DRA. PATRICIA GONZÁLEZ ZAMORANO	11521
PARTICIPANTES	JOAQUÍN RIVERA ROSAS	

II. DESCRIPCION DEL CONTENIDO DEL PROGRAMA DEL CURSO O ASIGNATURA

A) OBJETIVO GENERAL

Que el estudiante adquiera:

- Conocimiento teórico-prácticos para el manejo, gestión y análisis espacial a través del uso de herramientas de sistemas de información geográfica y procesamiento digital de imágenes
- Capacidad de abstracción y modelado espacial para la resolución de problemas territoriales.
- Destreza en el manejo de programas de SIG

B) DESCRIPCION DEL CONTENIDO	
TEMAS Y SUBTEMAS	TIEMPO (Horas)
 1 Introducción a la Geomática 1.1. Fundamentos de Cartografía 1.2. Geodesia y Topografía 1.3. Fundamentos de Percepción Remota 1.4. Sistemas de Geoposicionamiento Global (GPS) 	6
 2 Sistemas de Información Geográfica 2.1. Introducción 2.2. Modelos de representación (vectorial y raster) 2.3. Componentes y Funciones 2.4. Aplicaciones de los SIGs 2.5. Diseño de un proyecto 2.6. Interface 	8
 3 Fuente y calidad de datos geográficos 3.1. Datos primarios GPS 3.2. Fuentes cartográficas disponibles 3.3. Bases de datos tabulares 3.4. Metadatos 	10
 4. Edición de datos espaciales. 4.1. Proyecciones 4.2. Simbología y etiquetado. 4.3. Edición de datos vectoriales. 4.4. Hipervínculos. 	8
5. Análisis Vectorial. 5.1. Funciones y análisis del componente espacial 5.2. Funciones y análisis del componente tabular	12
6. Composición cartográfica y herramientas de apoyo6.1. Generación y edición de cartografía6.2. Colección de mapas en proceso por lotes	8
 7 Análisis raster. 7.1. Generación de modelos digitales de elevación 7.2. Mapa de pendientes 7.3. Perfiles topográficos 	12
8. Proyecto Final 8.1. Presentación de proyecto geoespacial 8.2. Conclusiones finales	8
Total de Horas	72

III. BIBLIOGRAFIA

- Bosque Sendra, J. 2000. Sistemas de Información Geográfica. Ed. Rialp. Madrid. 400 p.
- Chuvieco, E. Fundamentos de teledetección espacial. Ed. Rialp. Madrid, España. 2008. 453 p.
- Keates, J.S. 1996. Cartographic design and production. Longman Scientific & Technical. New York, U.S.A. 214 p.
- Sabins, F.F. 1997. Remote Sensing. Principles and Interpretation. 494 p.

Ligas a Sitios Web Útiles para el Curso

- Manual de aprendizaje QGIS 2.14 https://docs.ggis.org/2.14/es/docs/training manual/index.html
- Tutoriales de ArcGis https://desktop.arcgis.com/es/arcmap/10.5/get- started/introduction/arcgis-tutorials.htm
- Portal de Geoinformación. Sistema Nacional de Información Sobre Biodiversidad http://www.conabio.gob.mx/informacion/gis/
- Mapas de México. INEGI https://www.inegi.org.mx/datos/?t=0150

IV. PROCEDIMIENTO O INSTRUMENTOS DE EVALUACION

La calificación final se asignará conforme a los siguientes criterios:

- Asistencia: 80% obligatorio.
- Examen (30%)
- Prácticas (30%)
- Tareas (15%).
- Proyecto Final (25%).
- ACTIVIDADES DE APRENDIZAJE
 - Clases teóricas
 - Clases prácticas
 - Discusión y exposición de artículos científicos
 - Diseño y desarrollo de proyecto (trabajo en equipo)

