I. DATOS DE	L PROGRAMA	A Y LA ASIGNATURA
NOMBRE DEL	1	EN CIENCIAS EN EL USO, MANEJO Y PRESERVACIÓN DE LOS RECURSOS
PROGRAMA	NATURALE	S
NOMBRE DE LA	INTRODUCCIÓN AL ANÁLICIS ESPACIAL EN ESCULOSÍA	
ASIGNATURA	INTRODUCCIÓN AL ANÁLISIS ESPACIAL EN ECOLOGÍA	
CLAVE	9446	

TIPO DE ASIGNATURA	OBLIGATORIA	OPTATIVA	Χ
--------------------	-------------	----------	---

TIPO DE ASIGNATURA TEÓRICA	PRÁCTICA	TEÓRICA-PRÁCTICA	Χ
----------------------------	----------	------------------	---

NÚMERO DE HORAS	60 horas
NÚMERO DE CRÉDITOS*	6
TRIMESTRE EN EL QUE SE IMPARTIRÁ	Mayo-Agosto
FECHA DE ÚLTIMA ACTUALIZACIÓN	05/11/2025

^{*}Cada crédito equivale a ocho horas de clases teóricas, 16 horas de clases prácticas o 30 horas de trabajo de investigación.

RESPONSABLE DE LA ASIGNATURA		CLAVE SNI
	Dr. Pedro Peña Garcillán	38091
SUPLENTE DE LA ASIGNATURA		
PROFESORES PARTICIPANTES	Dr. Pedro Peña Garcillán,	
	Dra. Tania Valdivia Carrillo	

I. DESCRIPCIÓN DEL CONTENIDO DEL PROGRAMA DEL CURSO O ASIGNATURA

A) OBJETIVO GENERAL

El espacio es una dimensión fundamental de los sistemas biológicos a todos los niveles de organización biológica (individuo, población, comunidad, ecosistema,) y a sus diversas escalas espaciales (local, regional, continental, etc.). Los sistemas biológicos están estructurados espacialmente. El análisis y comprensión de esta estructura espacial es clave en el conocimiento ecológico porque la mayoría de los fenómenos investigados en ecología se hacen mediante muestreo del espacio, y son por tanto estructurados por fuerzas que tienen componentes espaciales.

Objetivos Particulares:

Este curso se propone como una primera introducción al análisis espacial en ecología. Su finalidad es introducir al alumno a los análisis espaciales y prepararlo conceptual y analíticamente para (1) entender el carácter funcional del espacio en los sistemas biológicos y (2) comprender y manejar herramientas analíticas básicas que le permita identificar y analizar la dimensión espacial de los sistemas biológicos.

El curso se compone de una primera parte dirigida la exploración de los conceptos básicos de la ecología espacial (Unidades 1 y 2) y una segunda parte dirigida a la comprensión y uso de diferentes métodos de

análisis (Unidades 3-6). Se realizarán ejercicios utilizando el programa R. El alumno adquirirá los conceptos y herramientas analíticas básicas para realizar análisis espaciales de la realidad ecológica.

TEMAS Y SUBTEMAS	TIEMPO
	(Horas)
UNIDAD I. Introducción.	, ,
1.1. La importancia del espacio / la geografía en ecología.	
1.2. Patrones y procesos en ecología.	6
1.3. Heterogeneidad ecológica. Causas y tipos de heterogeneidad.	
1.4. Concepto(s) de escala y su significado en ecología.	
UNIDAD II. El espacio en algunos marcos conceptuales de la ecología.	
2.1. Patrones y procesos en el espacio	
2.1.1. Dinámica de parches.	
2.1.2. Ecología del paisaje	8
2.2. Patrones y procesos a través de escalas espaciales.	
2.2.1. Teoría de biogeografía de islas	
2.2.2. Metapoblaciones y metacomunidades.	
UNIDAD III. Estructura espacial.	
3.1. Autocorrelación y dependencia espacial.	
3.2. El concepto de estacionaridad: Homgeneidad e isotropía.	8
3.3. Tipos de datos espaciales.	
3.4. Estructura espacial y muestreo de datos ecológicos.	
UNIDAD IV. Análisis de patrones de datos discretos (<i>Point pattern analysis</i>).	
4.1. Patrones de puntos de una variable.	
4.1.1. Distancia al vecino más cercano.	10
4.1.2. Análisis de segundo orden.	10
4.2. Patrones de puntos de dos variables.	
4.3. Patrones de puntos múltiples variables.	
UNIDAD V. Identificación y descripción de la estructura espacial.	
5.1. Estructura espacial y funciones de estructura.	
5.2. Funciones de estructura de una variable.	
5.2.1. Correlogramas (Moran's I, Geary's c).	12
5.2.2. Variogramas.	
5.3. Funciones de estructura de múltiples variables.	
5.3.1. Correlograma de Mantel.	
UNIDAD VI. Interpretación de las funciones de estructura (mapas).	8
6.1. Interpolación espacial.	
6.1.1. Polígonos próximos.	
6.1.2. Análisis de tendencia (<i>Trend surface analysis</i>).	
6.1.3. Interpolación lineal por distancia inversa ponderada.	
6.1.4. Krigging.	
UNIDAD VII. Ausencia de estacionaridad: partición del espacio.	8
7.1. Parches	
7.1.1. Propiedades de los parches	

7.1.2. Métodos de clasificación y agrupamiento de parches	
7.2. Fronteras	
7.2.1. Propiedades de las fronteras ecológicas	
7.2.2. Detección de fronteras con base en una o más variables.	
TOTAL	60

II. BIBLIOGRAFÍA

Generales

Fortin, M.-J., and Dale, M.R.T. 2005. Spatial analysis. A guide for ecologists. Cambridge University Press, New York. Legendre, P. and Legendre, L. 1998. Numerical Ecology. 2nd Edition. Elsevier Science B.V., Amsterdam (Cap. 13). Wagner, H.H. and Fortin, M.-J. 2005. Spatial analysis of landscapes: concepts and statistics. Ecology 86: 1975-1987.

I. Introducción.

Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73: 1943-1967. Li, H. and Reynolds, J.F. 1995. On definition and quantification of heterogeneity. Oikos 73: 280-284.

Li, H. and Reynolds, J.F. 1995. On definition and quantification of heterogeneity. Oikos 73: 280-284.

Wiens, J. A. 1989. Spatial scaling in ecology. Functional Ecology 3:385-397.

Wu, J. and Li, H. 2006. Concepts of scale and scaling. In: Wu, J. et al. (eds.) Scaling and uncertainty analysis in ecology: methods and applications. Pp. 3-15, Springer.

Dungan et al. 2002. A balanced view of scale in spatial statistical analysis. Ecography 25: 626-640.

McIntire, E.J.B. and Fajardo, A. 2009. Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90(1): 46-56.

Kolasa J. and Pickett, S.T.A. (eds.) 1991. Ecological heterogeneity. Springer-Verlag, New York. (Cap. 1-5).

García, D. 2008. El concepto de escala y su importancia en el análisis espacial. En: Maestre, F.T., Escudero, A. y Bonet, A.(eds.) Introducción al análisis espacial de datos en ecología y ciencias ambientales: Métodos y aplicaciones. Pp. 35-73, URJC-AEET-CAM, Madrid.

II. El espacio en algunos marcos conceptuales de la ecología

Turner 1989. Landscape Ecology: The effect of pattern on processes. Annu. Rev. Ecol. Syst. 20: 171-197.

Gotelli, N. 2001. A primer of ecology. Chapter 4. Metapopulations dynamics, 81-98. Chapter 7. Island Biogeography, 155-177. Sinauer Associates, Inc. Sunderland.

Watt, A.S. 1947. Pattern and process in the plant community. J. Ecol. 35: 1-22.

MacArthur, R.H. and Wilson, E.O. 1963. An equilibrium theory of insular zoogeography. Evolution 17(4): 373-387.

MacArthur, R.H. and Wilson, E.O. 1967. The theory of island biogeography. Princeton University Press, Princeton.

III. Estructura espacial

Diniz-Filho, J.A.F. et al. 2003. Spatial autocorrelation and red herrings in geographical ecology. 12: 53-64

Dormann, C.F. et al. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30: 609-628.

McGill, B. 2013. Autocorrelation: friend or foe?

https://dynamicecology.wordpress.com/2013/10/02/autocorrelation-friend-or-foe/

Legendre, P. 1993. Spatial autocorrelation: Trouble or new paradigm? Ecology 74: 1659-1673.

Jackson, H.B. and Fahrig, L. 2015. Are ecologists conducting research at the optimal scale? Global Ecol. Biogeogr. 24: 52-63.

Fortin, M.-J. et al. 1989. Spatial autocorrelation and sampling design in plant ecology. Vegetatio 83: 209-222. Legendre, P. et al. 2002. The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25: 601-615.

IV. Análisis de patrones de puntos

Perry et al. 2006. A comparison of methods for the statistical analysis of spatial point patterns in plant ecology. Plant Ecology 187: 59-82.

Tirado, R. and Pugnaire, F.I. 2003. Shrub spatial aggregation and consequences for reproductive success. Oecologia 136: 296-301.

Feagin, R.A. and Wu, B. 2007. The spatial patterns of functional groups and successional direction in a coastal dune community. Rangeland Ecol. Manage 60: 417-425.

V. Identificación y descripción de la estructura espacial

Amico, G.C. et al. 2008. Spatial structure and scale-dependent microhabitat use of endemic "tapaculos" (Rhinocryptidae) in a temperate forest of southern South America. Ecología Austral 18: 169-180.

Macchi, L. et al. 2011. Spatial analysis of sap consumption by birds in the Chaco dry forests from Argentina. Emu 2011: 212-116.

VI. Interpretación de las funciones de estructura (mapas)

Gittins, R. 1968. Trend-surface analysis of ecological data. Journal of Ecology 56(3): 845-869.

Gallardo, A. y Maestre, F. 2008. Métodos geoestadísticos para el análisis de datos ecológicos espacialmente explícitos. En: Maestre, F. et al. (eds.) Introducción al análisis espacial de datos en ecología y ciencias ambientales: Métodos y aplicaciones. Pp. 215-272, Ed. DYKINSON, S.L., Madrid.

VII. Ausencia de estacionariedad: Partición del espacio

Fagan, W.F. et al. 2003. Integrating edge detection and dynamic modeling in quantitative analyses of ecological boundaries. *BioScience* 53: 730-738.

Strayer, D.L. et al. 2003. A classification of ecological boundaries. *BioScience* 53: 723–729.

Hennenberg, K.J. et al. 2005. Border and ecotone detection by vegetation composition along forest-savanna transects in Ivory Coast. *Journal of Vegetation Science* 16: 301-310.

III. PROCEDIMIENTO O INSTRUMENTOS DE EVALUACIÓN

La evaluación se basará en la participación del estudiante en las diferentes actividades requeridas para completar el curso.

- Examen al final de la parte conceptual (Unidades 1 -3) (30%)
- Ejercicio de análisis práctico y discusión por escrito de un conjunto de datos "ejemplo", utilizando los conceptos y herramientas estudiados durante el curso (70%)

Actividades de aprendizaje

El aprendizaje se construirá con base en tres procesos interrelacionados: (1) exposición de los temas en el aula, (2) lectura y discusión de libros y de artículos científicos (ver bibliografía), y (3) exploraciones prácticas mediante ejercicios en R.

UNIDADES 1-3

En las unidades conceptuales (1 y 2) el alumno identificará y comprenderá la dimensión funcional del espacio en los sistemas biológicos, cómo se genera la estructuración espacial y las implicaciones ecológicas de la misma. Se realizará con base en la consulta y discusión de literatura científica.

UNIDADES 4-7

En las unidades analíticas (3-6) el alumno analizará y comprenderá las bases conceptuales de diversos métodos de análisis, y explorará su significado y alcance analítico mediante ejercicios en R.

