I. DATOS DE	I. DATOS DEL PROGRAMA Y LA ASIGNATURA				
NOMBRE DEL	MAESTRÍA	EN CIENCIAS EN EL USO, MANEJO Y PRESERVACIÓN DE LOS RECURSOS			
PROGRAMA	NATURALE:	\mathbf{S}			
NOMBRE DE LA	NANOTE	CNOLOGÍA APLICADA			
ASIGNATURA	NANOTE	CNOLOGIA APLICADA			
CLAVE	9448				

TIPO DE ASIGNATURA	OBLIGATORIA	OPTATIVA	Х
--------------------	-------------	----------	---

TIPO DE ASIGNATURA	TEÓRICA	Х	PRÁCTICA	TEÓRICA-PRÁCTICA	
NÚMERO DE HORAS		48			
NÚMERO DE CRÉDITOS*		6			
TRIMESTRE EN EL QUE SE I	MPARTIRÁ	Mayo	o-Agosto		
FECHA DE ÚLTIMA ACTUAL	IZACIÓN	27/10	0/2025		

^{*}Cada crédito equivale a ocho horas de clases teóricas, 16 horas de clases prácticas o 30 horas de trabajo de investigación.

RESPONSABLE DE LA ASIGNATURA	Dr. Luis Hernández Adame	CLAVE SNI
SUPLENTE DE LA ASIGNATURA	Dr. Luis G. Hernández Montiel	
	Dr. Luis G. Hernández Montiel Dr. Luis Daniel Moreno Figueroa	

DESCRIPCIÓN DEL CONTENIDO DEL PROGRAMA DEL CURSO O ASIGNATURA A) OBJETIVO GENERAL Conocer los fundamentos teóricos y aplicación de la nanotecnología en biotecnología. B) DESCRIPCIÓN DEL CONTENIDO **TIEMPO TEMAS Y SUBTEMAS** (Horas) Tema I. INTRODUCCIÓN A LA NANOTECNOLOGÍA 2 Subtema 1.1 Introducción a la nanotecnología Tema II. NANOMATERIALES Subtemas 2.1 Nanomateriales 8 2.2.1 Materiales inorgánicos 2.2.1.1 Nanopartículas metálicas 2.2.1.2 Nanopartículas semiconductoras

	2.2.1.3 Nanoestructuras	
	2.2.2 Materiales orgánicos	
	2.2.2.1 Nanopartículas de biopolímeros	
	2.2.2.2 Nanopartículas tipo VLP	
	2.2.3 Nanoestructuras híbridas	
	Tema III. MÉTODOS DE SÍNTESIS DE NANOMATERIALES	
	Subtemas 3.1 El método coloidal	
	3.2 Los métodos de radiólisis y fotoquímica	
	3.3 El método de irradiación por microondas	
	3.4 El método de emulsión	8
	3.5 El método solvotermal	
	3.6 El método de sol-gel	
	3.7 El método de "síntesis verde"	
	Tema IV. TÉCNICAS DE CARACTERIZACIÓN DE NANOMATERIALES	
	Subtemas 4.1 Microscopia electrónica de transmisión y barrido	
	4.2 Espectroscopia Infrarrojo	10
	4.3 Espectroscopia de absorción UV-Vis	
	4.4 Difracción de rayos X	
	4.5 Dispersión dinámica de luz	
	Tema V. TÉCNICAS DE SIMULACIÓN POR DINÁMICA MOLECULAR Y DOCKING	4
	Tema VI. USO DE NANOMATERIALES EN BIOTECNOLOGÍA	
	Subtemas 6.1 Funcionalización de nanopartículas	
	6.2 Bioacarreadores	
	6.3 Nanovacunas	8
	6.4 Nanosensores	
	6.5 Promotores de crecimiento	
	6.6 Antimicrobianos	
	Tema VII. APLICACIÓN DE LA NANOTECNOLOGÍA COMO PROYECTO DE INVESTIGACIÓN	8
TOTAL		48

II. BIBLIOGRAFÍA

- Raúl J. Martín-Palma; Akhlesh Lakhtakia. Nanotechnology; A Crash Course. SPIE Publications. ISBN: 978-0-819-480750, (2010).
- Yang Leng, Materials Characterization: Introduction to Microscopic and Spectroscopic Methods. John Wiley & Sons, ISBN: 978-3-527-334636, (2013).
- Abdelhamid Elaissari. Colloidal Nanoparticles in Biotechnology. John Wiley and Sons, ISBN: 978-0-470-258545, (2008).

Monique A. V. Axelos and Marcel Van de Voorde. Nanotechnology in Agriculture and Food Science. ISBN: 978-3-527-33989-1, (2017).

III. PROCEDIMIENTO O INSTRUMENTOS DE EVALUACIÓN

Actividades de aprendizaje:

El sistema de aprendizaje se basará en clases teóricas, que servirán como base para analizar y discutir los resultados por técnicas de caracterización relacionadas con el tema de investigación de cada alumno.

Evaluación

- Se aplicarán 2 exámenes parciales, cada uno de ellos corresponderá a 4 módulos del programa; el promedio de estas 2 calificaciones representará el 40% de la calificación final.
- Será considerado el 100% de asistencias y será ponderado al 20% de la calificación final.
- Para el desarrollo del curso, este requiere que los estudiantes se involucren; sus tareas y participación serán ponderadas con un 40%.

