I. DATOS	DEL PROGI	RAMA Y LA ASIGNATURA
NOMBRE	MAFSTRÍA	EN CIENCIAS EN EL USO, MANEJO Y PRESERVACIÓN DE LOS
DEL		
PROGRAMA	RECURSOS	NATURALES
NOMBRE DE		
LA	Tópicos Se	electos de Microbiología: Interacciones entre Bacterias, Ambiente y
ASIGNATURA	Hospeder	os.
CLAVE	9459	

TIPO DE ASIGNATURA OBLIGATORIA OPTATIVA X	TIPO DE ASIGNATURA	OBLIGATORIA	OPTATIVA	X
---	--------------------	-------------	----------	---

TIPO DE ASIGNATURA TI	TEÓRICA	PRÁCTICA	TEÓRICA-PRÁCTICA	Χ
-----------------------	---------	----------	------------------	---

NÚMERO DE HORAS	48 horas
NÚMERO DE CRÉDITOS*	6 créditos
TRIMESTRE EN EL QUE SE IMPARTIRÁ	Enero-abril
FECHA DE ÚLTIMA ACTUALIZACIÓN	23 de octubre de 2025

^{*} Cada crédito equivale a ocho horas de clases teóricas, 16 horas de clases prácticas o 30 horas de trabajo de investigación.

RESPONSABLE	
DE LA	Jorge Gustavo Rocha Estrada
ASIGNATURA	
SUPLENTE DE LA ASIGNATURA	Abraham Loera Muro
PROFESORES PARTICIPANTES	Luis Guillermo Hernández Montiel Arely Viridiana Pérez López María Goretty Caamal Chan

II. DESCRIPCIÓN DEL CONTENIDO DEL PROGRAMA DEL CURSO O ASIGNATURA

A) OBJETIVO GENERAL

Comprender la importancia de la diversidad funcional bacteriana y su impacto sobre los ecosistemas y hospederos, con énfasis en bacterias fitopatógenas, pero abarcando otras de ambientes terrestres y marinos de todo el espectro ecológico desde patogenicidad hasta mutualismo.

Objetivos específicos:

Revisar estudios científicos donde se estudie la relación entre la ecología de bacterias (por ejemplo, la virulencia de fitopatógenos) como resultado de las interacciones a nivel de individuos, poblaciones y comunidades, incluyendo las funciones colectivas y/o emergentes que resultan de sus comportamientos sociales, así como la respuesta de los hospederos, e integrando diferentes niveles de complejidad desde las bases moleculares hasta la relevancia ecológica, biotecnológica y evolutiva.

Promover en el alumno (a) el desarrollo de habilidades para analizar resultados experimentales e interpretaciones biológicas de investigaciones de alta calidad sobre interacciones de bacterias, cubriendo aproximaciones experimentales clásicas y modernas que permitan al estudiante proponer estrategias útiles en sus proyectos de posgrado.

	B) DESCRIPCIÓN DEL CONTENIDO	TIEN 45.0
TEN	MAS Y SUBTEMAS	TIEMPO (Horas)
UNI	DAD I. Introducción. (Jorge Rocha)	(110143)
a.	Perspectiva histórica de la ecología microbiana	
b.	Microbiología clásica vs Microbiología moderna: hacia modelos de interacción planta-bacteria	6
c.	Ecología microbiana vs microbiología ambiental: similitudes y diferencias	
UNI	DAD II. Mecanismos que median las interacciones bacterianas (Arely Pérez	
	López)	
2.1.	Interacciones negativas: amensalismo, antagonismo, depredación,	
2.2.	parasitismo, canibalismo, competición. Interacciones positivas: promoción de crecimiento, colonización, mutualismo,	6
۷.۷.	comensalismo.	
2.3.	Mecanismos moleculares que median las interacciones	
UNI	DAD III. Mecanismos de reconocimiento del hospedero (Goretty Caamal)	
3.1.	Los patrones moleculares asociados a microbios para un reconocimiento efectivo por parte del hospedero.	
3.2.	La respuesta diferencial inducidas por los microorganismos en el hospedero.	6
3.3.	La carrera armamentista evolutiva entre el microorganismo y el sistema	
	inmunológico del hospedero.	
UNI	DAD IV. Señalización y quorum sensing (Jorge Rocha)	
4.1.	Perspectiva histórica.	
4.2.	Gram negativos.	6
4.3.	Gram positivos.	
4.4.	Señalización inter-reino (entre plantas y bacterias)	

5.2.	Funciones colectivas: relevancia ecológica y manifestaciones macroscópicas.	6
5.3.	Subpoblaciones y diferenciación.	
5.4.	Especialización y división de labores.	
UNID	AD VI. Biofilms (Luis Hernández Montiel)	
6.1.	Regulación, mecanismos moleculares y componentes de la matriz.	
6.2.	Organización espacial en biofilms.	6
6.3.	Relevancia ecológica: biofilms en raíces y en infecciones.	
6.4.	Relevancia biotecnológica: resistencia a antibióticos.	
LIMID	AD VII. Comunidades bacterianas y redes de interacción (Abraham Loera)	
UNID	,	
7.1.	Perspectiva histórica (más allá de la era NGS).	
		6
7.1.	Perspectiva histórica (más allá de la era NGS).	6
7.1. 7.2.	Perspectiva histórica (más allá de la era NGS). Interpretando datos de secuenciación masiva.	6
7.1. 7.2. 7.3. 7.4.	Perspectiva histórica (más allá de la era NGS). Interpretando datos de secuenciación masiva. Respuestas de comunidades de suelo ocasionadas por infecciones. Redes de co-ocurrencia. AD VIII. Ecología sintética (Jorge Rocha)	6
7.1. 7.2. 7.3. 7.4.	Perspectiva histórica (más allá de la era NGS). Interpretando datos de secuenciación masiva. Respuestas de comunidades de suelo ocasionadas por infecciones. Redes de co-ocurrencia.	6
7.1. 7.2. 7.3. 7.4. UNID	Perspectiva histórica (más allá de la era NGS). Interpretando datos de secuenciación masiva. Respuestas de comunidades de suelo ocasionadas por infecciones. Redes de co-ocurrencia. AD VIII. Ecología sintética (Jorge Rocha)	-
7.1. 7.2. 7.3. 7.4. UNID 8.1.	Perspectiva histórica (más allá de la era NGS). Interpretando datos de secuenciación masiva. Respuestas de comunidades de suelo ocasionadas por infecciones. Redes de co-ocurrencia. AD VIII. Ecología sintética (Jorge Rocha) Comunidades sintéticas bacterianas.	6
7.1. 7.2. 7.3. 7.4. UNID 8.1. 8.2.	Perspectiva histórica (más allá de la era NGS). Interpretando datos de secuenciación masiva. Respuestas de comunidades de suelo ocasionadas por infecciones. Redes de co-ocurrencia. AD VIII. Ecología sintética (Jorge Rocha) Comunidades sintéticas bacterianas. Ensamble de comunidades.	-

III. BIBLIOGRAFÍA

- 1. Arend, K.I., Schmidt, J.J., Bentler, T., Lüchtefeld, C., Eggerichs, D., Hexamer, H.M. and Kaimer, C., 2021. Myxococcus xanthus predation of Gram-positive or Gram-negative bacteria is mediated by different bacteriolytic mechanisms. *Applied and Environmental Microbiology*, 87(5), pp.e02382-20.
- 2. Basler, M., Ho, B.T. and Mekalanos, J.J., 2013. Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. *Cell*, *152*(4), pp.884-894.
- 3. Segev, E., Wyche, T.P., Kim, K.H., Petersen, J., Ellebrandt, C., Vlamakis, H., Barteneva, N., Paulson, J.N., Chai, L., Clardy, J. and Kolter, R., 2016. Dynamic metabolic exchange governs a marine algal-bacterial interaction. *elife*, *5*, p.e17473.
- 4. Chen, H., Chen, J., Li, M., Chang, M., Xu, K., Shang, Z., ... & Fu, Z. Q. (2017). A bacterial type III effector targets the master regulator of salicylic acid signaling, NPR1, to subvert plant immunity. *Cell Host & Microbe*, *22*(6), 777-788.

- 5. Nealson, K.H., 2020. On the 50th Anniversary of the discovery of autoinduction and the ensuing birth of quorum sensing. *Environmental Microbiology*, 22(3), pp.801-807.
- 6. Corral-Lugo, A., Daddaoua, A., Ortega, A., Espinosa-Urgel, M. and Krell, T., 2016. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. *Science Signaling*, *9*(409), pp.ra1-ra1.
- 7. Vlamakis, H., Aguilar, C., Losick, R. and Kolter, R., 2008. Control of cell fate by the formation of an architecturally complex bacterial community. *Genes & development*, 22(7), p.945.
- 8. Shapiro, James A. "Bacteria as multicellular organisms." *Scientific American* 258, no. 6 (1988): 82-89.
- 9. Flemming, H.C. and Wuertz, S., 2019. Bacteria and archaea on Earth and their abundance in biofilms. *Nature Reviews Microbiology*, *17*(4), pp.247-260.
- 10. Beauregard, P.B., Chai, Y., Vlamakis, H., Losick, R. and Kolter, R., 2013. Bacillus subtilis biofilm induction by plant polysaccharides. *Proceedings of the National Academy of Sciences*, *110*(17), pp.E1621-E1630.
- 11. Torsvik, V., Sørheim, R. and Goksøyr, J., 1996. Total bacterial diversity in soil and sediment communities—a review. *Journal of Industrial Microbiology and Biotechnology*, *17*(3-4), pp.170-178.
- 12. Madsen, J.S., Sørensen, S.J. and Burmølle, M., 2018. Bacterial social interactions and the emergence of community-intrinsic properties. *Current opinion in microbiology*, *42*, pp.104-109.

IV. PROCEDIMIENTO O INSTRUMENTOS DE EVALUACIÓN

Actividades de aprendizaje

Revisión histórica de la relevancia de cada tema

Escritura de ensayos, donde el estudiante elabora hipótesis y preguntas científicas.

Revisión de artículos de investigación presentados por el profesor y los estudiantes.

Discusión a fondo de experimentos, gráficos, interpretación de figuras y de resultados experimentales de artículos de investigación.

Selección de artículos con los siguientes criterios (y a consideración de cada profesor):

- Artículo de investigación original.
- Relacionado a la sección evaluada.
- De preferencia relevante para la tesis del estudiante.
- Artículo de buena calidad, publicado en revista científica de impacto alto (IF >5) y
 Q1 de preferencia en el área de microbiología o general de ciencias naturales (evitar *Journals* muy especializados y editoriales depredadoras).

Evaluación

<u>Sección I</u>

Asistencia 10 Participación 20 Ensayo 70

Sección II a VII

Asistencia 10 Participación en discusión de artículos 30 Presentación de artículos 60

