

I. DATOS DEL PROGRAMA Y LA ASIGNATURA		
NOMBRE DEL	MAESTRÍA EN CIENCIAS EN EL USO, MANEJO Y PRESERVACIÓN DE LOS RECURSOS	
PROGRAMA	NATURALES	
NOMBRE DE LA	Introducció	ón a la Ingeniería Canótica
ASIGNATURA	Introducción a la Ingeniería Genética	
CLAVE	9304	

TIPO DE ASIGNATURA	OBLIGATORIA	OPTATIVA	Χ
--------------------	-------------	----------	---

TIPO DE ASIGNATURA	TEÓRICA	PRACTICA	TEÓRICA-PRACTICA	Χ
--------------------	---------	----------	------------------	---

NÚMERO DE HORAS	34 t + 48 lab = 80 h
NÚMERO DE CREDITOS	7
FECHA DE ÚLTIMA ACTUALIZACIÓN	21/04/2025

RESPONSABLE DE	Dra. Norma Yolanda Hernández-Saavedra
LA ASIGNATURA	Dra. Crisalejandra Rivera Pérez
PROFESORES PARTICIPANTES	Dra. Norma Yolanda Hernández-Saavedra Dra. Crisalejandra Rivera Pérez Betsaida Bibo Verdugo Cesar Salvador Cardona Felix M.C. Delia Irene Rojas Posadas

I. DESCRIPCIÓN DEL CONTENIDO DEL PROGRAMA DEL CURSO O ASIGNATURA

A) OBJETIVO GENERAL

Que el alumno conozca los principios teóricos, el manejo y la aplicación de técnicas básicas de uso común en bioquímica y biología molecular, como una herramienta adicional para abordar-solucionar problemas científicos específicos relacionados.

DESCRIPCIÓN:

En este curso se propone que el alumno adquiera los conocimientos necesarios (teóricos y prácticos) que le permitan, mediante el uso de técnicas básicas, tomar decisiones y diseñar esquemas de trabajo para abordar de una manera adecuada problemas científicos específicos.

Este curso estará conformado por un 30 % de sesiones teóricas y un 70 % de sesiones prácticas.

B) DESCRIPCIÓN DEL CONTENIDO	
TEMAS Y SUBTEMAS	TIEMPO (h)
PARTE TEÓRICA	

INTRODUCCIÓN. Manipulación genética	
UNIDAD I.	
	14 h /1.75
1. TÉCNICAS BÁSICAS: MODULO I	cred.
1.1. Proteínas	
1.1.1. Extracción deproteínas	
1.1.2. Cuantificación deproteínas	
☐ Método deBradford	
☐ Método deBradioid☐ Método deLowry	
·	
☐ Método deBiuret	
☐ Abs 280	
1.1.3. Electroforesis en geles de poliacrilamida	
Nativa	
Desnaturalizante	
1.1.4. Western Blot	
1.2 Ácidos nucleicos	
1.2.1 Extracción de ácidosnucleicos	
ADN	
• ARN	
1.2.2 Cuantificación de ácidosnucleicos	
1.2.2.1. Abs 260/280	
1.2.3 Electroforesis en geles de agarosa	
Southern Blot	
Northern Blot	
Dot ySlotBlot	
Bot y Glotblot	
UNIDAD II.	12 h/1.5
	cred.
2. TÉCNICAS BÁSICAS: MODULOII	
2.1. Corte y ligamiento de moléculas de ADN	
2.2. Vehículos de clonación	
2.2.1. Plásmidos como vehículos de clonación	
2.2.1.1. Propiedades básicas ytipos	
2.2.1.2. Purificación 2.2.1.3. Transformación de células	
2.2.1.3. Transformación de celulas 2.2.1.3.1. Método de CaCl ₂	
-	
2.2.1.3.2. Electroporación 2.2.1.3.3. Balística	
2.2.1.3.3. Balistica 2.3. Estrategias de clonación	
2.3.1. Librerías transcriptómicas	
2.3.2. PCR	
2.3.2.1. Punto final	
2.3.2.2. Tiempo real	
2.3.2.2.1 Tiempo real	
2.3.2.2.2 Tiempo real digital(Nanogotas)	
2.3.3. Proteínas recombinantes	
UNIDAD III	

6 h/0.75 cred. 3. TÉCNICAS BÁSICAS: MODULO III 3.1 Análisis básico de secuencias de ADN y aminoácidos 3.1.1 Secuenciación de ADN MétododeSanger 3.1.2 Usodeherramientas WWW para el análisis de secuencias de ácidos nucleicos y proteínas. 3.2.3 Estrategias de búsqueda en bancos de datos PARTE PRÁCTICA 48 h/3 cred. Práctica 1. Extracción de proteínas solubles Práctica 2. Cuantificación de proteínas (metodos Lowry y Bradford) Práctica 3. Electroforesis en geles de poliacrilamida (PAGE-SDS, PAGE-Nativa) Práctica 4. Western blotting Práctica 5. Aislamiento de ácido desoxiribonucleico y cuantificación Práctica 6. Aislamiento de ácido ribonucleico y cuantificación Práctica 7. Transferencia (blotting) de ácidos nucleicos (Southern blotting o Northern blotting en formato dot-blot) Práctica 8. Transformación Práctica 9. Purificación de ADN plasmídico Práctica 10. Corte y ligamiento de ADN Práctica 11. Reacción en cadena de la polimerasa y purificación de productos de Práctica 12. Reacción en cadena de la polimerasa en tiempo real (qPCR) Práctica 13. Análisis de datos qPCR Práctica 14. Análisis de secuencias 80 h/6 cred. **TOTAL**

II. BIBLIOGRAFÍA

- 1. Aussubel F, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA & Struhl K. (Eds.). 2000. Short protocols in molecular biology. 4th Edition. John Wiley and Sons, Inc. U.S.A.
- 2. Baxevanis AD, Ouellette BF, 2005. Bioinformatics: A practical guide to the analysis of genes and proteins. Wiley, 560 pp. (Biblioteca Daniel Lluch Cota, clave: QP620.B562001 [5445]).
- 3. Hames BD & Rickwood R. (Eds). 1990. Gel electrophoresis of proteins: a practical approach. Second Edition. Second edition. IRL Press at Oxford University Press, Oxford England. 383 p.p. (Biblioteca Daniel Lluch Cota, clave: QP 518.3.H35 1997 [4951]).
- 4. McPherson MJ, Quirke P & Taylor GR. 1996. PCR2. A practical approach. Oxford University Press. 251 pp. (Biblioteca Daniel Lluch Cota, clave QP 606. D46. P66 1995 [4560]).
- 5. Pevsner J, 2009. Bioinformatics and functional genomics. Wiley-Blackwell. 951 pp. (Biblioteca Daniel Lluch Cota, clave: QH441.2. P48 2003 [3148]).
- 6. Rickwood R. & Hames BD (Eds). 1990. Gel electrophoresis of nucleic acids: a practical approach. Second edition. IRL Press at Oxford University Press, Oxford England. (Biblioteca Daniel Lluch Cota, clave: QP 551.G334 1990 [4098]).
- 7. Ross J. 1998. Nucleic acid hybridization. Essential Techniques. John Wiley & Sons, England. 154 pp.
- 8. Sambrook J & Russell D. 2001. Molecular Cloning: Alaboratory manual. Third Edition. CSHL Press, N.Y. (three-book set). (Biblioteca Daniel Lluch Cota, clave: QH442.2.S35 2001 [5542]).
- 9. Sambrook J & Russell D. 2006. The condensed protocols. From Molecular Cloning: A laboratory manual. CSHL Press, N.Y. 800 pp.

10. Watson JD (Ed.). 2013. Molecular Biology of the gene / James D. Watson, Tania A. Baker, Alexander Gann, Michael Levine, Richard Losik. Pearson/Benjamin, Menlo Park, CA. (Biblioteca Daniel Lluch Cota, clave: QH431.W38 2013 [7039]).

Revistas: BioTechniques Methods in Molecular Biology

III. PROCEDIMIENTO O INSTRUMENTOS DE EVALUACIÓN

MODALIDAD DE EVALUACIÓN DE LA ASIGNATURA

Se aplicarán exámenes parciales por tema visto, que se realizaran en la plataforma virtual del curso (https://campusvirtual.cibnor.mx/), los exámenes estarán abiertos el lunes posterior al término de cada práctica y tendrán una duración de 15 a 30 min. El promedio de estas calificaciones representara el 30% de la calificación final.

Se requerirá la elaboración de reportes de cada una de las prácticas y una asistencia del 100% debido a que se trata de un curso teórico-práctico. Los reportes se entregaran a los ocho días de haber finalizado la práctica, en formato PDF, los cuales se enviarán vía correo electrónico al profesor en turno dentro del horario laboral (8:00 a 15:00 h). El promedio de las calificaciones de los reportes representaran el 70% de la calificación final). Calificación mínima aprobatoria: 8.000.

ACTIVIDADES DE APRENDIZAJE

Antes de la realización de cada práctica (14) se llevara a cabo una sesión teórica (2 horas) en la que se expondrán y discutirán los conceptos básicos, la metodología y las aplicaciones de la(s) técnica(s) a desarrollar.